
Public

SMART CONTRACT AUDIT REPORT

for

AladdinDAO

Prepared By: Yiqun Chen

PeckShield
August 14, 2021

1/17 PeckShield Audit Report #: 2021-199

sxwang@peckshield.com

Public

Document Properties

Client AladdinDAO
Title Smart Contract Audit Report
Target AladdinDAO
Version 1.1
Author Xuxian Jiang
Auditors Xuxian Jiang, Jing Wang, Shulin Bie
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.1 August 14, 2021 Xuxian Jiang Final Version (Amended #1)
1.0 July 30, 2021 Xuxian Jiang Final Version
1.0-rc1 July 18, 2021 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2021-199

Public

Contents

1 Introduction 4
1.1 About AladdinDAO . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Suggested Adherence Of Checks-Effects-Interactions Pattern 11
3.2 Timely massUpdatePools During Pool Weight Changes 12
3.3 Incorrect Pending ALD Reward Calculation . 13
3.4 Improved Logic in BaseStrategy::withdraw() . 14

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2021-199

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
AladdinDAO protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About AladdinDAO

AladdinDAO is a decentralized asset management protocol which shifts crypto investment from venture
capitalists to wisdom of crowd. AladdinDAO aims to be the liquidity gateway for DeFi world by
identifying and providing liquidity support to the most promising DeFi projects, and benefiting Aladdin

and DeFi community from enjoying the fast growth and returns from selected projects. As a result,
the protocol will help to reduce market information asymmetry and optimize asset and resources
allocations for DeFi community overall. The audited upgrade improves the staking logic with the
interaction with TokenMaster. The basic information of the AladdinDAO protocol is as follows:

Table 1.1: Basic Information of The AladdinDAO Protocol

Item Description
Issuer AladdinDAO

Website https://aladdin.club/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report August 14, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in

4/17 PeckShield Audit Report #: 2021-199

Public

this audit.

• https://github.com/AladdinDAO/aladdin-core.git (a5d68f5)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/AladdinDAO/aladdin-core.git (213f5c1)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/17 PeckShield Audit Report #: 2021-199

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2021-199

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2021-199

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2021-199

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the AladdinDAO

protocol. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place DeFi-related aspects under
scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 0

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2021-199

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, and 3 low-severity vulnerabilities.

Table 2.1: Key AladdinDAO Audit Findings

ID Severity Title Category Status
PVE-001 Low Suggested Adherence Of Checks-

Effects-Interactions Pattern
Time and State Fixed

PVE-002 Medium Timely massUpdatePools During Pool
Weight Changes

Business Logic Fixed

PVE-003 Low Incorrect Pending ALD Reward Calcula-
tion

Business Logic Fixed

PVE-004 Low Improved Logic in BaseStrat-
egy::withdraw()

Business Logic Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/17 PeckShield Audit Report #: 2021-199

Public

3 | Detailed Results

3.1 Suggested Adherence Of Checks-Effects-Interactions
Pattern

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Multiple Contracts

• Category: Time and State [4]

• CWE subcategory: CWE-663 [1]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [9] exploit, and the recent Uniswap/Lendf.Me hack [8].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the TokenMaster as an example, the emergencyWithdraw() function (see the code snippet below) is
provided to externally call a token contract to transfer assets. However, the invocation of an external
contract requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 208) starts before effecting the update
on internal states (lines 210−211), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the same entry
function.

203 // Withdraw without caring about rewards. EMERGENCY ONLY.
204 function emergencyWithdraw(address _token) onlyValidPool(_token) external {
205 uint pid = tokenToPid[_token];

11/17 PeckShield Audit Report #: 2021-199

Public

206 PoolInfo storage pool = poolInfo[pid - 1];
207 UserInfo storage user = userInfo[pid][msg.sender];
208 IERC20(pool.token).safeTransfer(address(msg.sender), user.amount);
209 emit EmergencyWithdraw(msg.sender , _token , user.amount);
210 user.amount = 0;
211 user.rewardDebt = 0;
212 }

Listing 3.1: TokenMaster::emergencyWithdraw()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy. However, it is important to take precautions in making use of nonReentrant to block
possible re-entrancy. Note this suggestion is also applicable to other routines, including deposit()

and withdraw() in the BaseVault contract.

Recommendation Apply necessary reentrancy prevention by utilizing the nonReentrant modifier
to block possible re-entrancy.

Status The issue has been fixed by this commit: e6fd0ed.

3.2 Timely massUpdatePools During Pool Weight Changes

• ID: PVE-002

• Severity: Medium

• Likelihood: Low

• Impact: Medium

• Target: TokenMaster

• Category: Business Logic [3]

• CWE subcategory: CWE-841 [2]

Description

The AladdinDAO protocol provides incentive mechanisms that reward the staking of supported assets.
The rewards are carried out by designating a number of staking pools into which supported assets
can be staked. And staking users are rewarded in proportional to their share of LP tokens in the
reward pool.

The reward pools can be dynamically added via add() and the weights of supported pools can
be adjusted via set(). When analyzing the pool weight update routine set(), we notice the need
of timely invoking massUpdatePools() to update the reward distribution before the new pool weight
becomes effective.

244 // Update the given pool’s ALD allocation point. Can only be called by the owner.
245 function set(address _token , uint256 _allocPoint , bool _withUpdate) external

onlyOwner onlyValidPool(_token){
246 if (_withUpdate) {

12/17 PeckShield Audit Report #: 2021-199

https://github.com/AladdinDAO/aladdin-core/commit/e6fd0ed

Public

247 massUpdatePools ();
248 }
249 uint pid = tokenToPid[_token];
250 totalAllocPoint = totalAllocPoint.sub(poolInfo[pid - 1]. allocPoint).add(

_allocPoint);
251 poolInfo[pid - 1]. allocPoint = _allocPoint;
252 }

Listing 3.2: TokenMaster::set()

If the call to massUpdatePools() is not immediately invoked before updating the pool weights,
certain situations may be crafted to create an unfair reward distribution. Moreover, a hidden pool
without any weight can suddenly surface to claim unreasonable share of rewarded tokens. Fortunately,
this interface is restricted to the owner (via the onlyOwner modifier), which greatly alleviates the
concern.

Recommendation Timely invoke massUpdatePools() when any pool’s weight has been updated.
In fact, the third parameter (_withUpdate) to the set() routine can be simply ignored or removed.

Status The issue has been fixed by this commit: 7ab8a4a.

3.3 Incorrect Pending ALD Reward Calculation

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: TokenMaster

• Category: Business Logic [3]

• CWE subcategory: CWE-841 [2]

Description

As mentioned in Section 3.2, the AladdinDAO protocol provides incentive mechanisms that reward the
staking of supported assets with certain reward tokens. The rewards are carried out by designating
a number of staking pools into which supported assets can be staked. Each pool has its allocPoint

*100%/totalAllocPoint share of scheduled rewards and the rewards for stakers are proportional to their
share of LP tokens in the pool. And the protocol provides a helper routine pendingALD() to query the
pending ALD rewards.

To elaborate, we show below the full implementation of this helper routine. This routine properly
computes the new overall aldReward, but fails to take into consideration the tokenDistributor por-
tion. In other words, the portion of rewards that can be applied to the accumulated reward per share is
smaller, i.e., aldReward.sub(aldReward.mul(tokenDistributorAllocNume).div(tokenDistributorAllocDenom

13/17 PeckShield Audit Report #: 2021-199

https://github.com/AladdinDAO/aladdin-core/commit/7ab8a4a

Public

)). While the current logic may not rely on this helper routine, the front-end display of the protocol
rewards to users may be misleading.

89 // View function to see pending ALDs on frontend.
90 function pendingALD(address _token , address _user) onlyValidPool(_token) external

view returns (uint256) {
91 uint pid = tokenToPid[_token];
92 PoolInfo storage pool = poolInfo[pid - 1];
93 UserInfo storage user = userInfo[pid][_user];
94 uint256 accALDPerShare = pool.accALDPerShare;
95 uint256 lpSupply = IERC20(pool.token).balanceOf(address(this));
96 if (block.number > pool.lastRewardBlock && lpSupply != 0) {
97 uint256 aldReward = aldPerBlock.mul(block.number.sub(pool.lastRewardBlock))
98 .mul(pool.allocPoint)
99 .div(totalAllocPoint);

100 accALDPerShare = accALDPerShare.add(aldReward.mul(1e18).div(lpSupply));
101 }
102 return user.amount.mul(accALDPerShare).div(1e18).sub(user.rewardDebt);
103 }

Listing 3.3: TokenMaster::pendingALD()

Moreover, it is important to emphasize that the current implementation does not support defla-
tionary tokens as the pool tokens. With that, it is important to vet the pool tokens before they are
added so that no deflationary tokens will be accidentally introduced into the protocol.

Recommendation Correct the above pendingALD() function by subtracting the tokenDistributor

portion.

Status The issue has been fixed by this commit: 21e8178.

3.4 Improved Logic in BaseStrategy::withdraw()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: BaseStrategy

• Category: Business Logic [3]

• CWE subcategory: CWE-841 [2]

Description

AladdinDAO is a decentralized asset management protocol which shifts crypto investment from ven-
ture capitalists to wisdom of crowd. The investment subsystem is inspired from the yearn.finance

framework and thus shares similar architecture with vaults, controller, and strategies.
While examining the strategy implementation (inside the BaseStrategy contract), we notice a

potential issue that needs to be addressed. Specifically, new strategy contracts of Aladdin have been

14/17 PeckShield Audit Report #: 2021-199

https://github.com/AladdinDAO/aladdin-core/commit/21e8178

Public

designed and implemented to invest VC assets (held in vaults), harvest growing yields, and return
any gains, if any, to the investors. In order to collect stuck assets in these strategy contracts, each
strategy implements a dedicated function, i.e., withdraw(), that can be invoked to collect non-want
assets back to the controller, which further passes through to the governance.

107 // Controller only function for creating additional rewards from dust
108 function withdraw(IERC20 _asset) external returns (uint balance) {
109 require(msg.sender == controller , "!controller");
110 require(want != address(_asset), "want");
111 balance = _asset.balanceOf(address(this));
112 _asset.safeTransfer(controller , balance);
113 }

Listing 3.4: BaseStrategy::withdraw()

To elaborate, we show above this withdraw() function. It comes to our attention that it properly
excludes the want assets from being collected. However, it does not exclude the reward assets.

Recommendation Improved the above withdraw() function by also excluding the reward token.
An example revision is shown below.

107 // Controller only function for creating additional rewards from dust
108 function withdraw(IERC20 _asset) external returns (uint balance) {
109 require(msg.sender == controller , "!controller");
110 require(want != address(_asset) && reward != address(_asset), "want");
111 balance = _asset.balanceOf(address(this));
112 _asset.safeTransfer(controller , balance);
113 }

Listing 3.5: BaseStrategy::withdraw()

Status The issue has been fixed by this commit: d726dd2.

15/17 PeckShield Audit Report #: 2021-199

https://github.com/AladdinDAO/aladdin-core/commit/d726dd2

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the AladdinDAO protocol. The
audited system presents a unique addition to current DeFi offerings by offering a decentralized asset
management protocol which shifts crypto investment from venture capitalists to wisdom of crowd.
The current code base is clearly organized and those identified issues are promptly confirmed and
fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

16/17 PeckShield Audit Report #: 2021-199

Public

References

[1] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[3] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[4] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

[8] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[9] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

17/17 PeckShield Audit Report #: 2021-199

https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About AladdinDAO
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested Adherence Of Checks-Effects-Interactions Pattern
	Timely massUpdatePools During Pool Weight Changes
	Incorrect Pending ALD Reward Calculation
	Improved Logic in BaseStrategy::withdraw()

	Conclusion
	References

